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We study theoretically and numerically the irreversible A+B→0 reaction-diffusion process of initially
separated reactants occupying the regions of lengths LA, LB comparable with the diffusion length �LA ,LB

��Dt, here D is the diffusion coefficient of the reactants�. It is shown that the process can be divided into two
stages in time. For t�L2 /D the front characteristics are described by the well-known power-law dependencies
on time, whereas for t�L2 /D these are well-approximated by exponential laws. The reaction-diffusion process
of about 0.5 of initial quantities of reactants is described by the obtained exponential laws. Our theoretical
predictions show good agreement with numerical simulations.
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I. INTRODUCTION

The irreversible reaction A+B→0 of two initially sepa-
rated and diffusing reactants A and B is concentrated in a
dynamic zone known as the reaction front. The formation of
the reaction front is simulated in the following way: initially
two kinds of reactants A and B are separated by an impen-
etrable barrier which is removed at time t=0 and the reac-
tants start to form the reaction front. The reaction-diffusion
model is applied to describe a wide spectrum of processes in
physics, chemistry, biology, and material science �1,2�. Well-
known examples of the application of the reaction front con-
ception are analyses of diffusion flames �3�, gas absorption
with chemical reaction in liquids �4,5�, diffusion with chemi-
cal reactions in liquids �6,7�, chemical diffusion in semicon-
ductors �8�, internal oxidation of the metals �9�, and electron-
hole gases in semiconductors �10�.

A standard way to treat the problem is to solve the system
of equations �1,2,11�

�NA

�t
= DA

�2NA

�x2 − R , �1a�

�NB

�t
= DB

�2NB

�x2 − R �1b�

with the initial conditions

NA�x,0� = NA0��− x�, NB�x,0� = NB0��x� ,

where NA and NB are the concentrations of the reactants A
and B, respectively, and NA0 and NB0 are their initial concen-

trations, DA and DB are the diffusion coefficients of the re-
actants, ��x� is the Heaviside step function, and R is the
macroscopic reaction rate. Analysis of the reaction-diffusion
processes shows that in one-dimensional �1D� systems fluc-
tuations play the dominant role and in the general case the
explicit form of R remains unknown �12,13�. It was shown
�14� that the fluctuations become essential starting with a
characteristic time. At times less than the characteristic time
the mean-field approximation

R = kNANB �2�

is fulfilled �k is the reaction rate constant�. The role of fluc-
tuations decreases with an increase of the system dimension
d and the mean-field approximation can be used in the sys-
tems with dimension d�2 �12,13�.

It was shown using the scaling ansatz that within the
mean-field approximation the long-time behavior of the front
is described by the following temporal dependencies �11�:

w � t1/6, Rf � t−2/3, �3�

where w is the width of the reaction front, and Rf is the
maximum local reaction rate.

Dependencies �3� have been also obtained using the qua-
sistatic approximation �QSA� for an infinite space problem
�12–15�, where it was assumed that the lengths LA and LB of
the regions occupied by A and B reactants are much larger
than the diffusion length, i.e., at any time LA ,LB��Dt,
where D is the diffusion coefficient of the reactants. Expres-
sions �3� were obtained for the same diffusion coefficients of
the reactants, DA=DB=D. This approximation is based on
the assumption that for sufficiently long times the kinetics of
the front is governed by two characteristic times. One char-
acteristic time, tJ=−J / �dJ /dt�, controls the rate of change in
the diffusive current J of the particles arriving at the reaction
zone. The second characteristic time, tf =w2 /D, is the equili-
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bration time of the reaction front. Assuming tf / tJ�1, one
can neglect the change in the particle currents on the bound-
aries of the reaction zone and QSA gives �15�

w � �D2/J�1/3, �4�

Rf � J/w . �5�

The most important feature of QSA is that both w and Rf
depend on time only due to the time dependence of the cur-
rent J�t�. The dependence of the current on time is deter-
mined as a solution of the external task: diffusion of the
reactants outside the reaction zone. Using QSA, the spa-
tiotemporal behavior of the system A+B→0 has been ex-
tended for arbitrary nonzero diffusion coefficients and initial
concentrations of the reactants �16�. Dependencies �3� were
well-confirmed by the experimental results �6,7,17–20�. The
influence of the concentrations of both the reactants and re-
action product on the diffusion coefficients was taken into
account in the theoretical investigation in �21�. In this case
the reaction front characteristics are well-approximated by
temporal power laws also.

All the dependences have been obtained within the infi-
nite space approach. The infinite space approach is the first
approximation: real physics systems �for example, electron-
hole recombination in semiconductor devices, vortex-
antivortex annihilations in superconductors, and vacancy-
interstitial annihilations in solids� have finite sizes. Actuality
of these tasks is increasing with the development of the
micro- and nanotechnologies. The behavior of an A reactant
island in the B reactant sea was investigated in �22�. The
time dependences of the reaction front characteristics ob-
tained in �22� differ from the dependences for the infinite
task. And what is more, these dependences can be nonmono-
tonic.

In this paper we theoretically investigate another impor-
tant case: the irreversible reaction of initially separated reac-
tants A and B occupying the finite regions of lengths compa-
rable with the diffusion length �LA ,LB��Dt�. The one-
dimension reaction-diffusion process, where products are
massless �reaction of the annihilation type�, is considered.

II. MEAN-FIELD APPROXIMATION

A. Mobile reactants

Let us consider first the symmetric case: DA=DB=D, LA
=LB=L and the same initial concentrations of the reactants
NA0=NB0=N0. Note that the reaction front is immobile due
to symmetry. We will analyze the reaction front using QSA,
i.e., the reaction characteristic time tf is much less than the
diffusion characteristic time tJ. Two characteristic stages can
be separated in the diffusion process. The first is a period
when t�L2 /D and expressions �3� are valid. The second
stage is characterized by t�L2 /D. At time t�L2 /D, the re-
actants start to exhaust and the concentration of reactant A is
obtained as a solution of the diffusion external task with
other boundary conditions. We assume that the reactant cur-
rents at x= �L are zero:

� �Ni

�x
�

x=�L
= 0, �6a�

where i=A ,B.
Under the approximation that the reaction front width w is

much less than L and the reactant completely reacts in the
reaction zone, the second boundary condition at x=0 is

Ni = 0. �6b�

The solution can be obtained by the method of the separation
of variables and presented in the form of a series �23�:

NA = −
4NA0

�
�
n=0

�
1

2n + 1
exp	−

D�2n + 1�2�2t

4L2 

	sin

�2n + 1��x

2L
. �7�

The reaction front is at x=0 and reactant A is placed at x

0. A similar expression can be written for the concentra-
tion of reactant B.

One can see that the ratio of the second term �n=1� to the
first �n=0� in Eq. �7� is proportional to the first term power
of 8, i.e., to exp�−8at�, where a=�2D /4L2. At at=0.58 the
second term is less than 1% of the first one. At t� tb
=0.58 /a we consider only the first term:

NA = −
4NA0

�
exp�− at�sin� �

2L
x� . �8�

Following QSA the front width and maximum reaction rate
are given by Eqs. �4� and �5� and their temporal dependen-
cies are determined by the temporal dependence of the cur-
rent J�t�. From Eqs. �4�, �5�, and �8� at t�L2 /D the front
width and maximum local reaction rate can be presented as

w�t� � exp�+
1

3
at� , �9�

Rf�t� � exp�−
4

3
at� . �10�

The total reaction rate is determined by the reactant current
at x=0 and is given by

R�t� � exp�− at� . �11�

For the finite space reaction-diffusion task we first obtained
that the distribution of the reactant concentrations are fitted
by sines and the concentrations decrease with time according
to the exponential law. This leads to the exponential temporal
dependences of the characteristic of the reaction front. The
dependences obtained by us differ from the known power
dependences.

Note that, in the infinite space problem, the reaction front
width w and characteristic diffusion length, LD=�Dt, are in-
creasing proportionally to t1/6 and t1/2, respectively. The con-
dition LD�w is fulfilled for all time. In the considered case
the reaction front width w increases with time �see Eq. �9��
but the lengths L of the regions occupied by the reactants are
time-independent values. Hence expressions �9�–�11� are
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valid for a limited time while w�t��L. Using Eq. �8� the
characteristic time tJ=−J / �dJ /dt� of a change in the diffu-
sive current J of the particles arriving at the reaction zone
can be estimated as tJ=4L2 /�2D. The equilibration time of
the reaction front is tf =w2 /D. The assumption w�t��L is
equivalent to the criterion of applicability of QSA tf / tJ�1.

The obtained result can be expanded to the case of differ-
ent diffusion coefficients, DA�DB. In the case of an immo-
bile front the reactant currents to the reaction zone, at x=0,
are equal. From Eq. �8� the equal currents at x=0 can be
obtained at

NA0
�DA = NB0

�DB, �12�

NA0LA = NB0LB. �13�

The obtained condition �12� is the same as the known con-
dition of an immobile front for the infinite problem �16,24�.
Condition �13� means that the initial quantities of the reac-
tants A and B are equal. At t�L2 /D the temporal dependen-
cies of the reaction front width w, the maximum reaction rate
Rf, and the total reaction rate R are given by Eqs. �9�–�11�,
respectively. In these expressions D and L have to be re-
placed by DA and LA or by DB and LB.

B. Immobile reactant B

Let us consider the special case where reactant B is im-
mobile, i.e., DB=0. The concentrations NA and NB of the
reactants in a dynamic zone can be described by a solution of
the following system �24–26�:

�NA

�t
= DA

�2NA

�x2 − kNANB, �14a�

�NB

�t
= − kNANB. �14b�

The process can be divided in time into two characteristic
stages similarly as it was done above for the case of equal
diffusion coefficients. At t�LA

2 /DA, one can use the well-
known approximation obtained for the infinite space task
�24–26�. In this approximation the width of the reaction front
is a constant, independent of time, and the maximum reac-
tion rate Rf is proportional to t−1/2 at the asymptotic long-
time approximation.

At t�LA
2 /DA we will consider two ranges: the external

task and the reaction zone. At long-time period reactant A
exhausts and in the first approximation the reaction front is
immobile. In this case the external task has a solution for the
concentration of reactant A in the form of Eqs. �7� and �8�,
where L is replaced by the maximum length Lf of the range
occupied by reactant A. The maximum length can be esti-
mated as

Lf = LA�1 + NA0/NB0� .

The current at the dynamic zone boundary is proportional to
exp�−�2DAt /4Lf

2�. In the reaction zone following the scaling
ansatz approach �11,26�, the solution of the equation system
�14� can be found in the form

Ni = e−aitF� x − xf�t�
w�t�

� , �15�

where xf�t� is the coordinate of the reaction front, i=A ,B.
Here the point of origin is placed at a distance Lf from the
left boundary.

We assume that the width of the reaction front and its
coordinate are given also by an exponential law. Substitution
of expression �15� into Eq. �14� gives that at the long-time
approximation the constants aA=�2DA /4Lf

2, aB=0. The
width w is independent of time like in the well-known case
of the infinite task, t�LA

2 /DA. However, at t�LA
2 /DA, the

total and maximum local reaction rates decrease with time
according to the exponential law, �exp�−aAt�. The coordi-
nate xf of the reaction front tends to zero also according to
the exponential law. Our results differ from the results ob-
tained in the framework of the infinite space approach �26�
where the total and maximum reaction rates are proportional
to t−1/2 and xf � t1/2 and increases without limit.

III. NUMERICAL CALCULATION

To confirm the obtained results, a numerical simulation of
the reaction has been carried out. Numerical solution of Eq.
�1� in the framework of the mean-field approximation using
the usual finite element method gives a good agreement with
our analytical results. This approach does not take into ac-
count fluctuation processes. It was shown that fluctuations
could play an important role in one-dimensional �1D�
reaction-diffusion infinite tasks and therefore the mean-field
approximation and the reaction rate in the form �2� are not
valid in the general case �12–14�. However, influence of the
fluctuations for the finite tasks considered in the present pa-
per were not analyzed yet. Therefore we use the Monte Carlo
methods which do not contain any explicit form of the mac-
roscopic reaction rate.

Our model consists of a one-dimensional lattice with LA
=LB. The particles of A and B are located on the lattice
points. The initial concentrations of the particles can be
specified as various values independent of the coordinate.
The developed software allows us to place a large number
�up to 105� of particles in every point. The motion of the
particle is simulated by a unit jump of each particle to the
left or to the right with a given probability at each time step,
�t=1. The probabilities of the jump of the A and B particles
can be different. Each particle A can react with a B particle
on the same lattice cell with the reaction probability �. The
probability is independent of the number of particles in the
cell. After each reaction both particles are removed from the
lattice.

Here we numerically simulate two cases.
�1� Diffusion coefficients for the A and B particles and

their initial concentrations are equal �DA=DB, NA0=NB0�.
�2� The B particles are immovable and their initial con-

centration is twice the concentration of the A particles �DB
=0, NB0=2NA0�.

The probabilities of unit jumps to the left and to the right
are taken as being equal and as 0.5 for the moving particles.
This corresponds to the diffusion coefficient equal to 0.5 in
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the chosen units. The results of the numerical simulation are
presented in Figs. 1 and 2. In both cases, the numerical simu-
lation properly confirms the obtained asymptotical temporal
dependencies of the reaction front characteristics. When t
�L2 /D, the numerical results are well-fitted by the known
power expressions obtained in the framework of the infinite
space approximation. For example, in both considered cases,
the total reaction rate R�t� is proportional to t−1/2 �insets of
Figs. 1�b� and 2�b��. At a longer time, t�L2 /D, the temporal
dependencies of the reaction front characteristics are fitted by
exponential laws as predicted above.

IV. DISCUSSION

We first analytically and numerically showed that in a
one-dimensional approximation for the finite space tasks
there are two stages for the irreversible reaction A+B→0
front. In the first stage the front characteristics are described

by the well-known power-law dependencies on time,
whereas the second one is characterized by the exponential
laws.

The numerical calculations well-confirm not only qualita-
tively �power and exponential laws� but also quantitatively
the predictions obtained analytically. The power-law ap-
proximations obtained for the infinite tasks are fulfilled at
time t less than a boundary value tb. For the case DA=DB,
this value can be determined from the condition: the second
term in the series �7� is much less than the first one tb

0.6 /a. The estimation carried out in Sec. II A predicts that
the transition from the power-law description to the exponen-
tial one is at a time of about 1100 for the first numerical
considered case. The numerical simulation gives that this
transition occurs in the range from 900 to 1200 �Fig. 1�.
Figure 1�a� presents the distribution of the reactant concen-
trations at t=1100. One can see good agreement between Eq.
�8� �solid lines� and the results of the numerical simulation
�circles and squares�. Note that at t= tb, when the power laws

(a) (c)

(b) (d)

FIG. 1. Numerical simulation of the reaction-diffusion process for the case of equal diffusion coefficients, D=DA=DB=0.5 �the prob-
abilities of unit jumps to the left and to the right are 0.5� and LA=LB=L=50: �a� the distribution of the particle density at t=1100 �solid lines
are given by Eq. �8��; �b� the temporal dependencies of the total and �c� maximum reaction rates; and �d� the reaction zone width. Inset in
�b� presents the temporal dependence of the total reaction rate at t
 � tb. Reaction probability is 0.0001; the initial particle concentrations
are 100 000. Note that for the chosen parameters D and L the coefficient a in Eqs. �9�–�11� is 0.000 493 and analytically predicted the
exponent indexes of R�t�, Rf�t�, and w�t� are −0.000 493, −0.000 657, and +0.000 164, respectively.
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change to the exponential laws, the reactant concentrations at
x= �L are about 0.75 of the initial concentrations and the
total quantities of the reactants �integral of Eq. �8� through x�
are about 0.5 of their initial quantities. These ratios are inde-
pendent of lengths of the regions occupied by reactants and
of the diffusion coefficient. The concentrations at x= �L and
the total reactant quantities decrease with time according to
the exponential laws at t� tb and should be easily measured.

In the special case where one reactant, B, is immovable,
the boundary value can be estimated as tb=4LA

2 /�2DA. For
the numerically simulated case this estimation gives tb=325
while numerical calculation −tb
400 �Fig. 2�b�, inset�. The
transition from the power laws to the exponential ones is
observed in the range from t=400 to 
800 �Fig. 2�. The
concentration of mobile reactant A on the region boundary is
about 0.5 at t=400 and 0.25 at t=800 of the initial concen-
tration. If one of the reactants is immobile, the reaction front
moves. This explains the widening of the transition range in
comparison with the case when both reactants are mobile.

The numerically obtained exponents in the power laws
and constants in the exponent indexes well agree with the
constants predicted by the analytical expressions. At t
 tb
theory predicts exponents of 0.5 for the fitting of the total
reaction rates �11,26�. Our calculation gives 0.506 and 0.55
�insets in Figs. 1�b� and 2�b��. At t� tb in the first simulated
case, the constant a in the exponent indexes in Eqs. �9�–�11�
is calculated as 0.000 493, and the numerical simulation
gives a=0.000 477–0.000 498 �Fig. 1�. In the second case
the parameter aA in Eq. �15� is estimated as 0.00 147, and the
numerical calculation gives aA=0.00 147–0.00 150 at time
above 750 �Fig. 2�. The numerical calculation with help of
the Monte Carlo methods confirms the applicability of the
mean-field approximation for 1D finite space tasks in the
wide temporal range.

V. CONCLUSION

Two stages for the irreversible reaction A+B→0 front
have been found in a one-dimensional approximation for the

(a) (c)

(b) (d)

FIG. 2. Numerical simulation of the reaction-diffusion process for the case of immovable B particles. The initial particle concentrations
are NB0=100 000, NA0=50 000, and DB=0, DA=0.5, and initial lengths LA=LB=20. The distribution of the particle density at t=2000: �a� the
temporal dependencies of the total �b� and maximum �c� reaction rates and of the reaction zone width �d�. Inset in �b� presents the temporal
dependence of the total reaction rate at t
 tb. Reaction probability is 0.000 01. In the asymptotic time regime the length occupied by the A
reactant is about 29 �see �a��. The analytically estimated exponent index aA of R�t� and Rf�t� is 0.001 47 for the chosen parameters D and LA

and the front width is independent of time
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finite space tasks with the mean-field reaction rate. For t
�L2 /D the front characteristics are described by the well-
known power-law dependencies on time, whereas for t
�L2 /D the unexpected results are obtained: the characteris-
tic temporal dependencies are properly approximated by the
exponential laws. At the time when the power laws change
by the exponential laws, the reactant concentrations at the
region boundary are about 0.75 of the initial concentrations
and the total quantities of the reactants are about 0.5 of their
initial quantities. These ratios are independent of the diffu-
sion coefficient and of lengths of the regions occupied by
reactants.

Our theoretical predictions qualitatively and quantita-
tively agree well with numerical simulations carried out by
the Monte Carlo methods. It was shown that the mean-field
approximation can be applied for simulation of reaction-
diffusion processes in 1D finite space tasks in a wide tempo-
ral range.
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